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PLANE DYNAMIC PROBLEMS FOR ELASTIC INCOMPRESSIBLE BODIES 
WITH INITIAL STRESSES* 

S.Iu. BABICH and A.N. GUS' 

Plane dynamic problems for elastic incompressible bodies with initial stresses are 

considered when the original dynamic problems admit reduction to steady state 

problems in a system of coordinates in rectilinear motion at constant velocity. The 

investigation is carried out using relations of the linearized theory of elasticity. 

Complex potentials are introduced for equal and unequal roots of the controlling 

equation with potentials of arbitrary form. A method of obtaining exact solutions 

using complex potentials is indicated in the case of bodies with initial stresses. 

Values of complex parameters are presented for bodies with elastic potential of 

specific form. A number of similar results was obtained in /l/ fur compressible 

bodies with initial stresses. 

Plane dynamic problems of the classical theory of elasticity have an exact solution when 

the original dynamic problem admits reduction to the steady state problem in a system of co- 

ordinates moving rectilinearly at constant velocity. Beginning with /2/ these problems were 

considered in the case of an isotropic /2-E/ and orthotropic /9/ bodies. These problemswere 

solved in /2-4, 7-9/ using the representation of stresses and displacements in terms of com- 

plex potentials, which facilitated the derivation of solutions in closed form. Complex pot- 

entials were used in the case of plane static problems for compressible and incompressible 

elastic bodies with homogeneous initial stresses in /lO,ll/ and /12/, respectively, for un- 

equal and equal roots. Relations of the linearized theory of elasticity were used in /13-15/ 

for small and large initial deformations in the case of bodies with the elastic potential of 

arbitrary form. The complex potentials introduced in /lo-12/ in the absence of initialstres- 

ses become in the case of unequal roots Lekhnitskii's complex potentials /16/ for an ortho- 

tropic linear elastic body, and in the case of equal roots they become the complex potentials 

of Kolosov-Muskhelishvili /17/ for the isotropic linear elastic body. 

1. Statement of the problem. Basic relations. Let us consider a nonlinearly 

elastic isotropic incompressible body with the elastic potential of arbitrary form. The results 
presented below apply also to an orthotropic incompressible body when the equivalent elastic 

directions coincide with those of coordinate lines of the selected coordinate system. We in- 

troduce the following coordinates: Lagrangian coordinates zj which inthenatural (undeformed) 

state are the same as Cartesian coordinates; Cartesian coordinates nj of the system moving 

rectilinearly along the oy, at constant velocity v; Cartesian coordinates for the initial 
(deformed state) yj. All quantities related to the initial state are denoted b:r a zero 
superscript; analysis is carried out using the linearized theory of elasticity /13-15/ in 

the form that is general in the theory of finite (large) initial deformations and all vari- 

ants of the theory of small initial deformations. The problem becomes specifically defined 

by the selection of expressions for the coefficients in basic equations /15/. We assume the 

initial conditions to be homogeneous, so that displacements can be expressed in the form 

u,o = 6,, (h, - 1)x,; h, = const; n, m = 1, 2 (1.1) 

where h, are the coefficients of elongation along the coordinate axes and 6,,is the Kronecker 
delta. In conformity with the above statement and (1.1) the normal stresses S,,' E IS,**' #O; 
S,, -C o,,*"f 0 are generally the nonzero stress tensor components in the initial state /13- 

15/. 

Under condition (1.1) the coordinates of the introduced systems are connected by the 
relationships 

yj=hjXj;T]1=_l/l_Vt; ?lzSEiEy,; j=i* 2; V=COnSt (1.2) 

By virtue of the incompressibility condition the elongation coefficients are linked in 
the initial state by the relation 
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h&,h, = 1 (1.3) 

Below, all perturbations are related to dimensions of the body in the initial deformed 

state; because of this the perturbation components Q,,,* of the stress tensor are relatedtothe 
area of the surface on which they are acting, and by virtue of relations (1.3) the density p 
of material will be assumed related to both the natural and the initial deformed state. 

Let us consider the basic relationships of the plane dynamic problem of the theory of 
elasticity for compressible bodies with initial stresses in the formulation of /13-15/. Ac- 

cording to /lO,ll/ these relationships reduce to the equations of motion 

-& Qn* + $ Q,I* - p -& UI = 0; (1.4) 

&Qn*t &Qsz*-p&z=0 

with the incompressibility condition 

and elasticity relations of the form 

(1.5) 

(1.6) 

where p is a scalar quantity related to hydrostaticpressure. The expressions for the compon- 

ents of tensor x* and quantity q,, for various formulations of the problem appear in /11,14,15/; 

selection of these expressions determines the problem. In the theory of large (finitejinitial 

deformations we have q,, = A,,-‘. The components of tensor x* satisfy the conditions of symmetry 

x&,,p = x&,,/l4 and 15/. 

Note that formulas (1.4)- (1.6) for elastic bodies with initial stresses have been form- 

ulated in Cartesian coordinates of the initial state, hence all boundary value problems for 

bodies with initial stresses defined in yj coordinates are formulated by analogy with respect- 

ive problems of the classic linear theory of elasticity. It is only necessary to take into 

account that stresses Qll* and Q,%* appear when y, = con&, while stresses Qz2* and QzI* when 
y, = const. From formulas (1.4)- (1.6) follow the equations for the determination of displace- 

ments u1 and u,, and the scalar quantity p of the form 

L,,u, = 0; II, m = 1, 2, 3; us = p (1.7) 

Here the differential operators are defined by expressions similar to those in /14 and 

15/. We represent the general solution of system (1.71, by analogy to static problems /11,12/, 

in the form 

(1.8) 

Un = ?b;‘q;’ (& x’l’- &x(2)) 

p = h;2q;2 
i 
[SC* ,111 - bq&‘q,l c&z + &,*,I gj+& 3 

&,2 $T - p G) & XC’) + G’q? {& & + 

L&P* - hq&‘q;’ G* + &dl & -P -g- ‘I -&- x(Z) 

Functions x(j) are solutions of the equation 

det )I L,, 11 x(j) = 0; n, m = 1, 2, 3; j = 1, 2 (1.9) 

Below, we consider, as in /2-4,6,9,18-ZO), the case when the input plane dynamic pro- 

blem when passing to moving Cartesian coordinates nj (1.2) admits the transformation to the 

steady state problem. Equation (1.9) in coordinates (1.2) can be represented in the form 
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where v, are roots of the equation 

v2 + 2Av +A, = 0 

in which the coefficients are defined as follows: 

(1.10) 

(1.11) 

(1.12) 

In the moving system of coordinates we represent solution (1.8) in the form 

Note that the quantities that define initial stressesappearin components of tensor x*, 
the elongation coefficients hj, and in the quantities qj. Respective expressions for the 
quantities x*,hj,qj are given in /11, 14,15/. Further construction of solutions depends on 
properties of the roots of Eq.tl.11). It is shown in /lo/ that the linearized problems con- 
sidered here for elastic bodies withinitialstresses do not reduce to respective problems of 
the classic linear theory of elasticity for an orthotropic body. 

2. Complex potentials. Equations for static problems corresponding to (1.11) were 
considered in /10-l?/. The uniqueness of solution of linearized problems was used in /20/, 
and the absence of inner stability loss in /13,18/. It is shown in /lO and 111 that Eq.(l.ll) 
in the case of static problems has no pure real positive roots. We assume that for fairly low 

(subsonic) velocities of motion that type of equations remains valid, hence Eq.(l.ll) has no 
pure real positive roots also in the case of dynamic problems. This situation also occurs in 
the classic linear theory of elasticity /2-4,6,9,18-20/. 

Consider the equation 

p* -t 2Apz+ A, = 0 (2.1) 

where A and A, are determined from formulas (1.12). 
The above reasoning shows that Eq.(2.1) has no real roots, i.e. Illlpj # 0. 
We introduce the complex variables Zj(j= 1, 2) defined by expressions 

Zj = & - Vt f PjY2 E 91 + Pj?z 
(2.2) 

Ij =i ~1 - Vt i- PjY2 z ril + @Jq2; h Pj # 0 

Taking into account (l.ll), (2.1), and (2.21, we represent Eq.cl.10) in the form 

az, aila& dig x(j) = 0: j = %,2 (2.3) 

Let us consider the introduction of complex potentials in the cases of unequal and equal 
roots of Eq.(2.1). 

Unequal roots: We select the solution of Eq.(2.3) of the form 

$1' = h,q,x; x(c) = 0; x = 2Re IF, (zJ f F, (zJ1 (2.41 

where F,(q) are analytic functions of complex variables ZJ o’=t, 2). 
We introduce new analytic functions @,(z,) defined by formulas 

Fj'(Zj) = pj&"@j(Zj); Bj = SC&&- h~~~h;'q~'(X&, - fXP)Z (2.5) 
ZGIK'kJ% I&&ja+ fx?ilI- Pv3 + hi%QpZ&xk- 

a~q~~'q~'(z~~~ i x*,&)1 pj'z i= $3 2 
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Equation (2.1) with allowance for (1.12) was used in the derivation of expression for 
the quantity Bj in (2.5). From (2.4), (2.5), (1.131, and (1.6) with allowance for (1.12) and 
(2.1) for the determination of stresses and displacements in terms of complex potentials@j(zj) 

we obtain the expressions 

Thus formulas (2.6) define stresses and displacements in temls of analytic functions 

@j(Zj)of the complex variables zj in the case of uneven roots.The complex potentials @j (zj) 
represent a generalization of complex potentials of Lekhnitskii /16/ in the case of static 

problems of classic linear theory of elasticity of an orthotropic body. 

Equal roots. Since in this case p1 = -pL1, we can represent the solution of Eq.(2.3) in 

the form 
x(j) = Re [Fp (z,) + r,Fp +,)I (2.7) 

21 = Y, - ut + p,y, = n, + ply,; f, = y, - z't - ply, = q, - p&z 

where Fn(j)(zl) are analytic functions of the complex variable zl. 

Below,we introduce new analytic functions 'pj(z,) of the complex variable .zl defined by 

formulas 
Fj(')' (Zl) = ‘/z~lR-‘C(j (z,); Fj(“’ (Z,) = ‘/,R-‘CJ3j (21) (2.8) 

B = x~z12~;1q;1p1z- h;‘o21 (&, - pz’y = pL12 [X;~,2p12~;2q;2hzqz -1. 

cq;%q? Gil - $7 + ~;‘qz’&zz - G’q? (%h + &,,I 

Relations (2.1) and (1.12) have been taken into account in the last expressions of (2.8). 

Substituting (2.7) and (2.8) into (1.13) and (1.6) and taking into account (1.12) and 

(2.1), for the determination of stresses and displacements in terms of complex potentials 

(rj(~,) we obtain formulas 

(2.9) 

Thus in the case of equal roots formula (2.9) defines stresses and displacementsinterms 

of analytic functions qI(zl)of the complex variable zl. The complex potentials cpj (2,) are 
generalizations of the Kolosov-Muskhelishvili complex potentials for static problems of the 

linear theory of elasticity of the isotropic body /17/. 
Formulas (2.9) can be represented in a form close to that of /17/by introducing the new 

functions 
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9%’ @l) = 8 h); (P*‘(zd = v (z1); Wl) = ‘p’ (4; y (Zl) = II’ (z3 

Using (2.10) we represent formulas (2.9) as 

201 

(2.10) 

(2.11) 

Using the representations in terms of complex potentials of form (2.6) in the case of 

unequal roots and (2.9) in that of equal roots, we can obtain exact solutions of the class of 

problems considered in /2-4, 5-9/ and other publications of the classic linear theory of 

elasticity. 

3. Method of solution. Values of complex parameters. Passage to the limit. 
We shall indicate the method of constructing exact solutions of dynamic problems for bodies 

with initial stresses by using complex potentials obtained for respective static problems. 

First, it should be pointed out that a comparison of respective formulas for dynamic problems 

in the case of compressible bodies /l/ with formulas derived above for incompressible bodies 

shows that the expressions for stresses and displacements in terms of complex potentials have 

the same structure. The only difference appears in formulas defining the coefficients Ynm(i) 
and y&j) . It is, thus, possible to obtain a solution of a general form common for both com- 

pressible and incompressible bodies. 
Let us compare the expressions for stresses and displacements in terms of complex poten- 

tials for dynamic problems in the case of unequal roots (2.6) and in that of equal roots (2.9) 

with the respective expressions in /lO and ll/ for unequal and in /12/ for equal roots. The 

comparison shows that stresses Qz2*, Qzl* and Q1,*, and displacements u1 and uz are defined 

in terms of complex potentials by the same formulas, but the expressions defining stress QIZ* 

differ. Note that in the case of static problems for elastic bodies with initial stresses 

exact solutions were obtained for the following plane problems. For the first, second and 

mixed half-plane problems in /lo-12/, for the contact problem of the half-plane and a stamp 

free of friction in /12,21/; for the contact problem for the half-plane with friction at the 

stamp in /22/; for problems of normal cleavage crack and transverse and longitudinal shear 

under arbitrary loading of crack edges in /23-25/, and for problems of splitting of elastic 

bodies by a rigid wedge in /26/. These problems were reduced to problems for the lower half- 

plane at whose boundary y, =:Y 0 particular combinations of quantities Q22*,Q21*,~1 and z+were 

specified. As indicated above quantities Q22*,Q21*,~1 and uz are expressed in terms of complex 

potentials by formulas that are of the same form for static and dynamic problems (the coef- 
ficients in these formulas are, certainly, defined in terms of known quantities by various 
formulas). The complex potentials for static problems, calculated on the basis of the exact 

solution, remain unchanged also for the respective static problems /lo-12, 21-26/. Formulas 

for the determination of stresses 'Qzz*, Qz,* and Q,,*, and of displacements ul and uz also 
remain unchanged. It is necessary to use the formulas obtained above only for the determina- 

tion of stresses Q,%*. 

It is, thus, possible to formulate the following method of investigation (derivation of 

exact solutions) of dynamic problems for bodies with initial stresses that correspondtostatic 

problems for bodies with initial stresses /lo-12/, 21-26/. It is necessary to introduce in 
the complex potentials /lo-12, 21-26,' the complex parameters pj, the complex variables Zjt 

and coefficients y,,(j) and y*(j) (except ylz@) and y12(')) taken from this paper or from /l/. 
The complex potentials obtained in this‘way provide exact solutions of the respective dynamic 

problems (in the considered here formulation) of general form common to compressible and in- 
compressible bodies. By a similar substitution we obtain from /lo-12, 21-26/ also formulas 

for the determination of stresses Qt2*, Qzl* and Qu*, and displacements u1 and u2 for dynamic 
problems. For determining stress Q12* it is necessary to use formulas derived in this paper 

together with the complex potentials obtained by the method indicated above. 
For the subsequent investigation of the effect of initial stresses on the considered 

dynamic processes it is necessary to determine the complex parameters pj and coefficients $!, 
and # for bodies with elastic potentials of' specific form. For this the formulasofmono- 
graphs /13-15/, of the present paper and those in /l,lO,ll/ should be used. As an example, 
these quantities are calculated for incompressible bodies with elastic potentials of specific 
form. 
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Determination of complex parameters. For the Treloar potential (body of the neo- 
Hookean type) we obtain in conformity with /11,14,15/ and with allowance for (l-12), after a 

number of transformations, expressions for the coefficients in Eq.(2.1) of the form 

where c," is the shear wave velocity in the body free of load, c,~, is the shear wave velocity 
polarized in the y,Oy, plane propagating along the OY, axis in a body with initial stresses 

/27/, and Cl0 is a constant appearing as a multiplier in the expression for the elastic pot- 

ential. 

From (3.1) and (2.1) we obtain for the complex parameters expressions of the form 

Formulas (3.1) and (3.2) were obtained in the theory of large (finite) initial deforma- 

tions. 

In the theory of small initial deformations /13-15/ for the linearly elastic body, when 

the initial condition is dertermined by the geometrically linear theory, the complex parameters 

are of the form 

Complex parameters of bodies with elastic potentials of different structure can be deter- 

mined in a similar form. 

Passing to limit for equal roots. Setting in formulas (2.8) and (2.9) F-O we 

obtain $2 = 1; vi:) = -$2, with all expressions in (2.8) and (2.9) turning into the respective 

expressions for static problems of bodies with initial stresses /12/. If, in addition, initial 

stresses are assumed zero, then, as shown in /12/, we obtain the Kolosov-Muskhelishvili form- 

ulas for static problems of the classic theory of elasticity for isotropic incompressible bod- 

ies. 

Passing to the limit for unequal roots. Setting u = 0 in formulas (2.6) we obtain 
vi',' = 1; 1):': = ~0; j = 1, 3. In that case all expressions in (2.5) and (2.6) become the respective 

expressions /ll/ for static problems for incompressible bodies with initial stresses. If in 

addition initial stresses are assumed zero, then, as shown in /lo/, we obtain Lekhnitskii's 

expressions for static problems of the classic theory of elasticity for orthotropic incompres- 

sible bodies /16/. 

4. An example. The Rayleigh waves. As an example we shall consider the problem 

of propagation of Rayleigh surface waves in the half-plane y,<O with initial StreSSeS. The 

velocity u is assumed unknown, and appropriate equations are derived for its determination. 

The analysis for equal and unequal roots is carried out separately. Equations for velocity 

determination are derived from the condition of existence in the half-plane of nonzero Complex 

potentials, which ensure zero stresses at the half-plane boundary at yz = 0. 

The case of equal roots. At the half-plane boundary at gz= 0 we obtain from (2.11) 

the boundary conditions 

Qra* = Re (]Y (~1) + Z1 CD' (z~)] + s>r(') a (zr)} = 0 (4.1) 
Qx,* = Re (~1yc1(') ]Y (~1) + E, m' (zJ] + y,l(% (2,)) = 0 

and from the condition of existence of nonzero solutions of system (4.1) we obtain for the 

determination of the Rayleigh wave velocity an equation of the form 

(2) Y?l - CLIY*,(')h*,(l) = 0 __ 

in which the quantities are determined using formulas (2.9) and (2.1). 

The case of unequal roots. At the half-plane boundary we obtain from (2.6) the bound- 

ary conditions 

Qiz* = 2Re [@I' (zl) + 0,' (za)] = 0 (4.2) 

QJ,' = -2Re [~IYZI (')uJo,' (4 + c"zl'21 WP* (zz)] = 0 

and from the condition of existence of nonzero solutions of system (4.2) we obtain for the 

determination of the Rayleigh wave velocity an equation of the form 
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byr1(2) - plyzp = 0 (4.3) 

in which the quantities are determined using formulas (2.1) and (2.6). 

Numerical example. A body of the neo-Hookean type. In this case complex para- 
meters are of the form (3.2). Since at u<clyz we have the case of unequal roots, hence the 
equation that defines the velocity of Rayleigh waves is of the form (4.3). Let us assume that 
the condition S,,= u~%*o = 0 is satisfied at the half-plane. 

From (2.3), (2.6), (3.1) and (4.3) we have 

(1) _ p2y$ = _ +_ (S + & + 32 - 1) (2 - 1); 
hYZ1 z (1 + z’) 

z = +ylcJq (4.4) 

When v<c~, we obtain from (4.3) and (4.4) the single equation 

18+z*+31.-i=o (4.5) 

which coincides with the respective equations in /19/. Denoting by s,the positive real root 
of Eq.(4.5) we obtain from the second expression of formulas (4.4) the relation 

us= c"R = c&*(i - +:A;") = h;cs (I- zZh,ah;Z) (4.6) 

If the initial state is also defined for the plane deformation (A,= i), from (4.6) with 
(1.3) taken into account, we obtain 

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8. 

9. 

10. 

11. 

12. 

13. 
14. 
15. 

16. 
17. 

18. 
19. 

20. 

“= s c\ = c&, (1 - za*A;‘) (4.7) 

The results (4.6) and (4.7) coincide with those in /19/. 
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